Answer:
The original length of the specimen is found to be 76.093 mm.
Explanation:
From the conservation of mass principal, we know that the volume of the specimen must remain constant. Therefore, comparing the volumes of both initial and final state as state 1 and state 2:
Initial Volume = Final Volume
πd1²L1/4 = πd2²L2/4
d1²L1 = d2²L2
L1 = d2²L2/d1²
where,
d1 = initial diameter = 19.636 mm
d2 = final diameter = 19.661 mm
L1 = Initial Length = Original Length = ?
L2 = Final Length = 75.9 mm
Therefore, using values:
L1 = (19.661 mm)²(75.9 mm)/(19.636 mm)²
<u>L1 = 76.093 mm</u>
Answer:
In the result of a earthquake, you should direct people into areas that are safe, such as places where the ground has not been broken up, and then tell people to get out of their cars and be careful. You should also have them carry any valuable items out of the car(if they have time), and then wait until the initial shocks and aftershocks are over, and then tell them to get back into their cars and then drive carefully and safely.
Answer:
Explanation:
Thermal reservoir:
It is the body which have infinite amount of heat capacity and store large amount of heat.The temperature of thermal reservoir is constant and does not change with time.The temperature of thermal reservoir is not change even heat is going out from reservoir or heat going inside the reservoir.The temperature of thermal reservoir remains constant and does not depend on the surroundings.
Answer:
11.6 mm
Explanation:
With a factor of safety of 5 and a yield strength of 900 MPa the admissible stress is:
σadm = strength / fos
σadm = 900 / 5 = 180 MPa
The stress is the load divided by the section:
σ = P / A
σ = 4*P / (π*d^2)
Rearranging:
d^2 = 4*P / (π*σ)

