A gas made up of atoms escapes through a pinhole 0.225times as fast as gas. Write the chemical formula of the gas.
Answer:
Explanation:
To solve this problem, we must apply Graham's law of diffusion. This law states that "the rate of diffusion or effusion of a gas is inversely proportional to the square root of its molecular mass at constant temperature and pressure".
Mathematically;
r₁ is the rate of diffusion of gas 1
r₂ is the rate of diffusion of gas 2
m₁ is the molar mass of gas 1
m₂ is the molar mass of gas 2
let gas 2 be the given H₂;
molar mass of H₂ = 2 x 1 = 2gmol⁻¹
rate of diffusion is 0.225;
i .e r1/r2 = 0.225
0.225 = √2 / √ m₁
0.225 = 1.414 / √ m₁
√ m₁ = 6.3
m₁ = 6.3² = 39.5g/mol
The gas is likely Argon since argon has similar molecular mass
Answer:
The answer would be 1.5 kJ.
Explanation:
When you use the equation q = m x c x ∆T you will be able to find the energy gained or lost. The data for the water in this case is just there to distract you so ignore it. :D
Answer:
The Bohr Model is very limited in terms of size. Poor spectral predictions are obtained when larger atoms are in question. It cannot predict the relative intensities of spectral lines. It does not explain the Zeeman Effect, when the spectral line is split into several components in the presence of a magnetic field.
Explanation: