Answer: 0.077 M
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time taken for decay process = 10 minutes
a = initial amount of the reactant= 0.859 M
a - x = amount left after decay process =?
Putting values in above equation, we get:


Thus the concentration of a after 10.0 minutes is 0.077 M.
Torque = r x F
|F| = mg = 60 * 10 N = 600 N ( assuming g ~ 10m/s^2)
distance of fulcrum = torque / Force = 90/600 m = .15 m.
Since the bulb consumes 100 watts of power and its efficiency is 95%,
it generates 95 watts of light energy and 5 watts of heat energy whenever
it's turned on.
5 watts means 5 joules of energy per second.
(2.5 hours) x (3,600 seconds/hour) = 9,000 seconds
(9,000 seconds) x (5 joules/second) = 45,000 joules of heat in 2.5 hours
Explanation:
The given data is as follows.
mass (m) = 170 kg, Distance (s) = 9.6 m
Height (h) = 3.3 m, Force (F) = 1400 N
First, we will calculate the work performed by her as follows.
W = Fs
= 
= 13440 J
Hence, minimal work necessary to lift the refrigerator is as follows.
U = mgh
= 
= 5497.8 J
Therefore, we can conclude that he performed 5497.8 J of work.
Answer:
uh finish the question please lol.