Answer:
0.2941 = 29.41% probability that it was manufactured during the first shift.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Defective
Event B: Manufactured during the first shift.
Probability of a defective item:
1% of 50%(first shift)
2% of 30%(second shift)
3% of 20%(third shift).
So

Probability of a defective item being produced on the first shift:
1% of 50%. So

What is the probability that it was manufactured during the first shift?

0.2941 = 29.41% probability that it was manufactured during the first shift.
<u>CHECK </u><u>THE </u><u>TERMS </u><u>OF </u><u>USE.</u><u>.</u><u>. </u>
<u>UNDER </u><u>THAT, </u><u>YOU'LL </u><u>SEE </u><u>SUBSCRIPTIONS, </u><u>ETC.</u><u>.</u><u>. </u>
Each letter of the alphabet is worth two times as much as the one before it, implying that the value of each letter rises in mathematical progression. The formula for finding the nth term of an arithmetic progression would be used. I am written as
a + (n - 1)d = Tn
Where
The number of terms in the arithmetic sequence is represented by n.
The common difference of the terms in the arithmetic sequence is represented by d.
The first term of the arithmetic sequence is represented by a.
Tn stands for the nth word.
Based on the facts provided,
n = 26 characters1 Equals a
3 minus 1 equals 2 (difference between 2 letters)
Therefore,
1 + (26 - 1)2 = T26
51 = T26
The formula for calculating the sum of an arithmetic sequence's n terms
is as follows:
[2a + (n - 1)d] Sn = n/2
As a result, S26 is the sum of the first 26 terms.
S26 = 20/2[2 1 + (26 - 1)2] S26 = 20/2
[2 + 50] S26 =
676 = S26 = 13 52
Answer:
Revolution is the first one that will be uuu uuu in iy and the world is a a a better place in a slotted than an art area with an open mind and a good one for me and I will be back from the family and will be back from the family and will be back from the family and will be back from the family and will be back from the family and will be back from the family for the weekend so I'll probably