The answer to your questions is as follows:
most soluble
>CH3CH2OH
>CH3OCH3
>CH3CH3
<span>least soluble
</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
Yes, you're right the answer is 0,02 moles.
Answer:
Option 4 with o-h in the most polar bond, since the two atoms in the bond have the greatest difference in electronegativity. This is assuming there are no other factors in other atoms bound to either of the elements in the bond.
Explanation:
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
Answer:
Solid metal
Explanation:
The reduced form of metal ions is the metal in elemental state (simple substance). So, if you have a solution with metal ions and they are reduced, you probably will see the deposition of the metal. For example: if you have a solution with sodium ions (Na⁺), and the ions are then reduced, you will see the aparition of a solid phase of metallic sodium (Na(s)), according to the following half-reaction:
Na⁺ + e- → Na(s)