Answer:
The correct answer to the following question will be Option A (I1 > I2).
Explanation:
Method for moment of inertia because of it's viewpoint including object at a mean distance "r" from the axis is,
⇒ mr²
<u>For Case 1:</u>
Let the length of a rod be "r".
The axis passes via the middle of that same rod so that the range from either the axis within each dumbbell becomes "
".
Now,
Now total moment of inertia = sum of inertial moment due to all of the dumbbell
⇒ 
⇒ 
<u>For Case 2:</u>
Axis moves via one dumbbell because its range from either the axis becomes zero (0) and its impact is zero only at inertia as well as other dumbbell seems to be at a range "r" from either the axis
Now,
Total moment of inertia = moment of inertia of dumbbell at distance "r".

And now we can infer from this one,
⇒ 
So that "I1 > I2" is the right answer.
I think it is that protons are stuck with the neutrons in a strong force that is in the nucleus
In physics<span>, a </span>force<span> is said to do </span>work<span> if, when acting, there is a </span>displacement<span> of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the work done on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement).
power= work over time
the more power you put into your work the less time it will take, if you have less power the more time</span>