I'll assume that the chair has four legs.
Since the chair weights 3.7 kg by itself, it will weigh (79+3.7)=82.7 kg with the person sitting on it. And each of the chair's legs will take about (82.7/4)=20.675 kg.
Each leg touches the floor in a circle with 1.3cm diameter. The area of that circle is about (3.14*(1.3/2)^2)=1.327 cm^2.
Pressure is measured by force per area. So, the pressure from each leg is about 20.675kg / 1.327cm^2. That simplifies to 15.58 kg/cm^2.
Answer:

I guess you can round it to 11 seconds.
Explanation:
Going with a speed 9m/s means you are going 9 meters in each second.
If you are going 9 meters in second how many seconds will it take to 100 meters?
Visually;
9 meters - - - 1 second
100 meters - - - ?seconds.
When you write like this 9 times ?seconds equal to 100 meters time 1 second. (you probably know this but just in case)
So to find ?second you multiply 100meters by 1 and divide it by 9 whixh will give you 11.1111 seconds whixh again I believe you can round it to 11.
(Kind of a) Proof;
If 9m * ?sec = 100 m * 1 sec
you send 9 meters to other side.
?sec = (100 m * 1 sec) ÷ 9m
Hope it was clear and it helps! Please let me know if you have any questions.
Answer:
C, Tibia.
- The tibia is located down in the lower leg. Heres what it looks like.
i hope this helped at all.
Answer:
d) 289.31 m
Explanation:
Energy provided by potential energy = mgh = m x 9.8x 200 sin10.5 = 357.18m
Energy used by friction = μmgcos 10.5 x 200 = .075 x m x 9.8 x cos 10.5 x200 = 144.54 m .
Energy used by friction on plain surface = μmg x d.( dis distance covered on plain ) =.075x m x 9.8 xd = .735 m d
To equate
357.18 m -144.54 m = .735 m d
d = 289.31 m .
Answer:
Explanation:
Potential energy is the energy stored within an object, due to the object's position, arrangement or state