Answer:
i would say that the answer would be B
Answer:

Explanation:
As we know that the resultant of two vectors is given as

here we know that



now we have



Answer:
You take the light from a star, planet or galaxy and pass it through a spectroscope, which is a bit like a prism letting you split the light into its component colours. "It lets you see the chemicals being absorbed or emitted by the light source. From this you can work out all sorts of things," says Watson
Answer:
The time needed is 
Explanation:
From the question we are told that
The magnitude of the stimulated acceleration due gravity is 
The diameter of the spaceship is 
Generally the force acting on the spaceship is

Given that the spaceship is rotating it implies that the force experienced by the occupant is a centripetal force so

Thus

=> 
Generally the speed of this spaceship is mathematically represented as

=> ![v^2 = [\frac{2\pi}{T}] ^2](https://tex.z-dn.net/?f=v%5E2%20%20%3D%20%20%20%5B%5Cfrac%7B2%5Cpi%7D%7BT%7D%5D%20%5E2)
=> 
=> 
=> 
substituting values


Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz