Answer:
F=2627.6N
Explanation:
The work done by this resistive force while traveling a distance <em>d</em> underwater would be:

where the minus sign appears because the force is upwards and the displacement downwards.
This work is equal to the change of mechanical energy. At the diving plataform and underwater, when she stops moving, the woman has no kinetic energy, so all can be written in terms of her total change of gravitational potential energy:

Putting all together:

Answer:
At an angle of 
Explanation:
Assume the river flows from East to West so for the swimmer to cross across it, assume he crosses it from West to East.
The resultant speed will be given by

Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
Answer: The intensity level of sound in the bedroom is 80dB
Explanation:
Intensity of lawn mower at r=1m is 100dB
Beta1= 10dBlog(I1/Io)
100dB= 10dB log(I1/Io)
10^10= I1/Io
I1= Io(10^10)
10^12)×(10^10)= I1
I1=10^-2w/m^2
Intensity of lawn mower at r=20m
I2/I1=(r1/r2)^2 =(1/20)^2
I2= I1(1/400)
I2=2.5×10^-3W_m^2
Intensity of 4 lown mowers at 20m fro. Window
= 10dBlog(4I2/Io)
= 10^-4/10^-12
=80dB