Answer:
The speed of light measured in any frame is c = 3.00E8 m/s.
This is one of Einstein's postulates of special relativity.
Answer:
Q (reaction) = -69.7 kJ
Explanation:
Octane reacts with oxygen to give carbon dioxide and water.
C₈H₁₈ + 25 O₂ ---> 16 CO₂ +18 H₂O
This reaction is exothermic in nature. Therefore, the energy is released into the atmosphere. This reaction took place in a calorimeter, there the temperature (T) increases by 10 C. The heat capacity of the calorimeter is 6.97 kJ/C
The heat (q) of the reaction is calculated as follows:
Q= -cT, where c is the heat capacity of the calorimeter and T is the increase in temperature
q = -(6.97) x (10) = -69.7kJ
<em>Since the heat capacity is given in kilo -joule per degree Celsius, therefore, the mass of octane is not required </em>
Answer:
Explanation:
My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows
Impulse = change in momentum
change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows
change in momentum = mv - ( - mv ) = 2mv
So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return , it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec