Step-by-step explanation:
8.9x-5 and -6.8x+8
8.9-6.8 + -5+8
2.1x+3
1/2+1/8+1/4=7/8
4/8+1/8+2/8=7/8
1-7/8 = 3/8
the fourth on inherited 3/8 of the estate.
When we factorise an expression, we are looking for simple factors that multiply to get the original expression. Usually it is very natural to factorise something like a quadratic in x. For example:
x^2 + 3x + 2 = (x+1)(x+2)
But there are other situations where factorisation can be applied. Take this quadratic:
x^2 - 9x = x(x-9)
This second example is closer to the question in hand. Just like x was a common factor to both x^2 and -9x, we are looking for a common factor to both 6b and 24bc. The common factor is 6b.
Hence 6b + 24bc = 6b(1 + 4c).
I hope this helps you :)
Answer:
If we expect that it is respective then Helen will have 25% of the money
Step-by-step explanation:
Step-by-step explanation:
OK, let's assume it this way:
<em>Sn=1.1!+2.2!+3.3!+...+n.n!</em><em>=</em><em>(</em><em>2</em><em>‐</em><em>1</em><em>)</em><em>.</em><em>1</em><em>!</em><em>+</em><em>(</em><em>3</em><em>-</em><em>1</em><em>)</em><em>.</em><em>2</em><em>!</em><em>+</em><em>(</em><em>4</em><em>-</em><em>1</em><em>)</em><em>3</em><em>!</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>-</em><em>1</em><em>)</em><em>.</em><em>n</em><em>!</em>
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!<em>=</em><em>(</em><em>2</em><em>.</em><em>1</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>.</em><em>2</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>.</em><em>3</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n-1</em><em>)</em><em>n</em><em>!</em><em>-</em><em>n</em><em>!</em><em>)</em><em>=</em><em>(</em><em>2</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em>
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+<em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>n</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em>
and boom problem solved