Responda:
+ 0,9kJ / mol
Explicação:
Dados os calores de combustão do enxofre monoclínico e enxofre rômbico como - 297,2 kJ / mol e - 296,8 kJ / mol, respectivamente para a variação na transformação de 1 mol de enxofre rômbico em enxofre monoclínico conforme mostrado pela equação;
S (mon.) + O2 (g) -> SO2 (g)
Uma vez que são todos 1 mol cada, a mudança na entalpia será expressa como ∆H = ∆H2-∆H1
Dado ∆H2 = -296,8kJ / mol
∆H1 = -297,2kJ / mol
∆H = -296,8 - (- 297,2)
∆H = -296,8 + 297,2
∆H = 297,2-296,8
∆H = + 0,9kJ / mol
Portanto, a mudança na entalpia da equação é + 0,9kJ / mol
Answer:In ionic compounds, electrons are transferred between atoms of different elements to form ions. But this is not the only way that compounds can be formed. Atoms can also make chemical bonds by sharing electrons equally between each other. Such bonds are called covalent bonds. Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). For example, two hydrogen atoms bond covalently to form an H2 molecule; each hydrogen atom in the H2 molecule has two electrons stabilizing it, giving each atom the same number of valence electrons as the noble gas He.
Compounds that contain covalent bonds exhibit different physical properties than ionic compounds. Because the attraction between molecules, which are electrically neutral, is weaker than that between electrically charged ions, covalent compounds generally have much lower melting and boiling points than ionic compounds. In fact, many covalent compounds are liquids or gases at room temperature, and, in their solid states, they are typically much softer than ionic solids. Furthermore, whereas ionic compounds are good conductors of electricity when dissolved in water, most covalent compounds are insoluble in water; since they are electrically neutral, they are poor conductors of electricity in any state.
This is because it has a full outer valence shell! so there are 8 electrons and that means it doesn't have the urge the gain anymore
Answer: 0.0043mole
Explanation:Please see attachment for explanation
Answer:
% sodium= 13.6 % sodium
% carbon= 35.5 % carbon
% hydrogen= 4.7% hydrogen
% nitrogen = 8.3% nitrogen
% oxygen = 37.8 % oxygen
Explanation:
To find its percent composition means that we are to find to find the percentage of each of the constituents of the compound present.
The molar mass of monosodium glutamate is 169.11 gmol-1
Hence;
Percent of sodium= 23 gmol-1/169.11 gmol-1 × 100 = 13.6 % sodium
Percent of Carbon= 60 gmol-1/169.11 gmol-1 ×100 = 35.5 % carbon
Percent of hydrogen= 8/169.11 gmol-1 ×100 = 4.7% hydrogen
Percent nitrogen = 14/169.11 gmol-1 × 100 = 8.3% nitrogen
Percent oxygen = 64/169.11 gmol-1 ×100 = 37.8 % oxygen