Answer:
0.74 grams of methane
Explanation:
The balanced equation of the combustion reaction of methane with oxygen is:
it is clear that 1 mol of CH₄ reacts with 2 mol of O₂.
firstly, we need to calculate the number of moles of both
for CH₄:
number of moles = mass / molar mass = (3.00 g) / (16.00 g/mol) = 0.1875 mol.
for O₂:
number of moles = mass / molar mass = (9.00 g) / (32.00 g/mol) = 0.2812 mol.
- it is clear that O₂ is the limiting reactant and methane will leftover.
using cross multiplication
1 mol of CH₄ needs → 2 mol of O₂
??? mol of CH₄ needs → 0.2812 mol of O₂
∴ the number of mol of CH₄ needed = (0.2812 * 1) / 2 = 0.1406 mol
so 0.14 mol will react and the remaining CH₄
mol of CH₄ left over = 0.1875 -0.1406 = 0.0469 mol
now we convert moles into grams
mass of CH₄ left over = no. of mol of CH₄ left over * molar mass
= 0.0469 mol * 16 g/mol = 0.7504 g
So, the right choice is 0.74 grams of methane
In the combustion process using excess oxygen, each mole of methane results to 1 mole of co2 while ethane produces 2 moles of Co2. Under same conditions, these can be translated to volume. Hence the total volume absorbed is 10 cm3 + 20 cm3 = 30 cm3.
Answer:
The precipitated are option a and d.
Explanation:
2 LiI(aq) +Hg2(NO3)2(aq) → Hg2I2(s) ↓ + 2 LiNO3(aq)
Cation Hg2+ 2 in the presence of iodide, a precipitated is formed.
Zn(s) + 2AgNO3(aq) → 2 Ag(s) ↓ +Zn(NO3)2(aq)
Zinc starts to get rid, and some white particles also stick to it. Afterwards the solution becomes cloudy and a precipitate appears, which is the solid silver
Answer:
I cant answer B, but I can answer A, and I don't think it is a scientifically reasonable plan.
Explanation:
The bag of sand weighs less than the gold statue, and yes the bag of sand seems like it would keep the trap from activating, but you would scientifically have to put something that was the same weight as the gold statue on the pedestal that the statue is on.