Answer:
Halogens
Explanation:
From the given choices, the halogens will have the smallest radius within the same period.
The size of an atom is estimated by the atomic radius. This is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state.
- Across a period in the periodic table, atomic radii decrease progressively from left to right.
- Down a group from top to bottom, atomic radii increase progressively due to the addition of successive shells.
Since halogen is the right most group from the choices given, it will have the smallest radius.
Delta H = q / mass * delta temperature
B is correct
salt lowers the freezing point of water (colligative property) by lowering the interaction and intermolecular forces between water molecules
Answer:
0.016M
Explanation:
First we find the mole of AgNO3 by using the formula mass/molar mass..
Then we find molarity by the formula mole/volume...
I hope you get this..
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.