Answer:
<h2>
<em><u>URANIUM</u></em><em><u> </u></em></h2>
Explanation:
What is the source of energy in nuclear power plants?
<em><u>Uranium</u></em> is the fuel most widely used by nuclear plants for nuclear fission. <u>Uranium</u> is considered a nonrenewable energy source, even though it is a common metal found in rocks worldwide. Nuclear power plants use a certain kind of uranium, referred to as U-235, for fuel because its atoms are easily split apart.
In an ecosystem, the only true producers are autotrophic organisms like plants and bacteria. These organisms produce energy by converting the energy from the sun into simple sugars.
All of the other organisms in the food chain, like the fruit fly, are simply consuming the energy produced by the plants/bacteria and not actually making/producing energy from a new source.
Answer: The author used the word "conversely" because the first statement he made is in CONTRAST to the second statement he made.
Explanation:
Matter is made up of atoms or molecules that are in constant motion. The motion of these tiny particles ( molecules) gives the object energy. The movement of these molecules depends on the state of matter which includes
--> GASEOUS STATE: Here, the particles are completely free to move and are always in motion.
--> LIQUID STATE: particles in this state slide by one another and are always in motion.
--> SOLID STATE: particles in this state are held tightly together but are always in motion.
Also, the molecules in motion are greatly affected by temperature changes. Increase in temperature will cause the particles in the liquid to move faster. Such is seen when soup is heated, the molecules travel faster than before. But the OPPOSITE is seen in an ice cube. This is because the ice cube is in solid state and of a lower temperature.
Answer:
six noble gases
Here are five of the six noble gases: helium, neon, argon, kypton and xeon. They're all colourless and transparent. Krypton and xeon form compounds only with difficulty. Helium, neon and argon don't form compounds at all.