The moles of I₂ will form from the decomposition of 3.58g of NI₃ is 0.0136 moles.
<h3>How we calculate moles?</h3>
Moles of any substance will be calculated as:
n = W/M, where
W = required mass
M = molar mass
Given chemical reaction is:
2NI₃ → N₂ + 3I₂
Moles of 3.58g of NI₃ will be calculated as:
n = 3.58g / 394. 71 g/mol = 0.009 moles
From the stoichiometry of the solution, it is clear that:
2 moles of NI₃ = produce 3 moles of I₂
0.009 moles of NI₃ = produce 3/2×0.009=0.0136 moles of I₂
Hence, option (3) is correct i.e. 0.0136 moles.
To know more about moles, visit the below link:
brainly.com/question/15303663
Answer:
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Explanation:
Here, 
H(hydrogenated pdt.) is same for both 1,4-pentadiene and 1,3-pentadiene as they both produce pentane after hydrogenation
H(diene) depends on stability of diene.
More stable a diene, lesser will be it's H(diene) value (more neagtive).
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Hence,
is higher (less negative) for trans-1,3-pentadiene
Answer:
Should be either mendele or fermium
maybe lawrencium not sure but I think it’s lawrencium! Sorry if wrong heh
Explanation: <u><em>really trying to help! If it’s wrong super sorry!!!</em></u>
Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Answer:
here: "salt and sugar"
Explanation:
I dunno, looks pretty, gives 5 points. even tough any context is missing
but seriously:
salt and sugar look the same. just someone with a split personality