Answer:
The final temperature will be close to 20°C
Explanation:
First of all, the resulting temperature of the mix can't be higher than the hot substance's (80°C) or lower than the cold one's (20°C). So options d) and e) are imposible.
Now, due to the high heat capacity of water (4,1813 J/mol*K) it can absorb a huge amount of heat without having a great increment in its temperature. On the other hand, copper have a small heat capacity (0,385 J/mol*K)in comparison.
In conclusion, the copper will release its heat decreasing importantly its temperature and the water will absorb that heat resulting in a small increment of temperature. So the final temperature will be close to 20°C
<u>This analysis can be done because we have equal masses of both substances. </u>
A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
PH is defined as the negative log of Hydrogen ion concentration. Mathematically we can write this as:
![pH=-log[H^{+}]=-log[H_{3}O]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D%3D-log%5BH_%7B3%7DO%5D%20%20)
We are given the concentration of

. Using the value in formula, we get:
Therefore, the pH of the solution will be 3.745
Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L