C) studying seismic waves
AKA what is studied from earthquakes
<h2>Option 1 is correct option .</h2>
Explanation:
The velocity of sound depends upon temperature . The temperature is different at different altitudes .
The velocity of sound has no effect of pressure . Thus at different altitudes , if pressure is different , it makes no difference .
Therefore the speed of sound varies rapidly with altitude , due to variation of temperature .
It also depends on the nature of medium . which also varies with altitude .
Moreover we cannot get distance by dividing time interval with 3 .
The molecules of milk in Glass B have greater kinetic energy than the molecules of milk in Glass D.
<u>Answer:</u>
<em>Equivalence point and end point are terminologies in pH titrations and they are not the same.
</em>
<u>Explanation:</u>
In a <em>titration the substance</em> added slowly to a solution usually through a pippette is called titrante and the solution to which it is added is called titrand. In acid-base titrations acid is added to base or base is added to acid.the strengths of the <em>acid and base titrated</em> determines the nature of the final solution.
At equivalence point the <em>number of moles of the acid</em> will be equal to the number of moles of the base as given in the equation. The nature of the final solution determines the <em>pH at equivalence point. </em>
<em>A pH less than 7 will be the result if the resultant is acidic and if it is basic the pH will be greater than 7. </em>In a strong base-strong acid and weak base-weak acid titration the pH at the equivalence point will be 7 indicating <em>neutral nature of the solution.
</em>
Answer:
Explanation:
The process is isothermic, as P V = constant .
work done = 2.303 n RT log P₁ / P₂
= 2.303 x 5 / 29 x 8.3 x 303 log 2 / 1 kJ
= 300.5k J
This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.
heat supplied = 300.5k J
specific volume is volume per unit mass
v / m
pv = n RT
pv = m / M RT
v / m = RT / p M
specific volume = RT / p M
option B is correct.