Answer:
im good thxs for offering tho!
Explanation:
The time taken for the object to reach to top of pile is 0.012 year.
<h3>Time of motion </h3>
The time taken for the object to reach to top of pile is calculated as follows;
time of motion = distance traveled/speed
time of motion = (1.1 x 10¹⁴ x 10³ m)/(3 x 10⁸ m/s)
where;
- speed of light = 3 x 10⁸ m/s
time of motion = 3.67 x 10⁵ sec = 0.012 year
Thus, the time taken for the object to reach to top of pile is 0.012 year.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.
The characteristics of wave are amplitude, speed , frequency and wavelength.
<u>Explanation:</u>
Amplitude is defined as the distance covered by the particles or molecules moving in a wave nature. So the maximum positive and negative peak position is termed as amplitude of the wave.
Every wave forms a series of crests and trough regions. The crest region is the positive amplitude while the trough region is the negative amplitude. The distance between two successive crests and troughs are termed as wavelength.
A single crest and trough forms a complete cycle. So the number of times a cycle is repeated for a given time is known as frequency. Speed is defined as the product of frequency and wavelength of the wave. In other words, speed of a wave is the rate at which the particles are moving a given area per unit time.