Answer:
<h3>Because of friction , B. not all potential energy is converted into kinetic energy.</h3>
l hope it helps
Answer:
e = 10 V
Explanation:
given,
number of the coaxial loops = 10
Cross sectional area = 0.5 m²
magnitude of magnetic field =
B = 3 T + (2 T/s)*t.
B = ( 3+ 2 t ) T
induced potential difference = ?
At time = 2 s
we know,
induced emf

∅ = B . A




e = -10 V
magnitude of induced emf
|e| = |-10 V|
e = 10 V
the induced potential difference in the loop = e = 10 V
Answer:
Explained
Explanation:
A) The total energy of the system is defined by the energy at maximum amplitude, which we'll call A. At that point, the energy of the system is
E = 1/2×m×A^2;
since energy is conserved, this is also the total amount of energy that the system ever has.
So at x=1/2A,
the potential energy of the system is 1/8×m×A^2
which is one-fourth of the system's total energy. Therefore, the remaining three-fourths is kinetic.
B) (i) Doubling the maximum amplitude will quadruple the total energy:

(ii) Doubling the maximum amplitude will double the maximum velocity

(iii) Doubling the maximum amplitude will double the maximum acceleration: m×a = -k(2A)
(iv) Doubling the maximum amplitude leaves the period unchanged:
(neither m nor k has changed).
"Gender plays an important role in the six components of health. False."
Answer:
The tension is 14 N
Explanation:
For this problem we have to use newton's law, so:

The second string is connected to the mass of 8 kg, but the mass of 8 kg is connected to the mass of 20kg, so we can say that the second string is handling the two masses. so:
