<u>Answer:</u> The fugacity coefficient of a gaseous species is 1.25
<u>Explanation:</u>
Fugacity coefficient is defined as the ratio of fugacity and the partial pressure of the gas. It is expressed as 
Mathematically,

Partial pressure of the gas is expressed as:

Putting this expression is above equation, we get:

where,
= fugacity coefficient of the gas
= fugacity of the gas = 25 psia
= mole fraction of the gas = 0.4
P = total pressure = 50 psia
Putting values in above equation, we get:

Hence, the fugacity coefficient of a gaseous species is 1.25
1)Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, ..
The solution has a concentration 20 mgr in each mL of the final solution.
To solve this problem, we need to know about concentration. The concentration formula can be defined as how much the mass per unit volume is. It can be written as
M = m/V
where M is concentration, m is mass of solute, V is the total volume of solution.
From the text we know that :
m = 10g
vsolvent = 45mL
vsolute = 5 mL
find the total volume (V)
V = vsolvent + vsolute
V = 45 + 5
V = 50mL
Then, find the concentration
M = m/V
M = 10gr / 50 mL
M = 1000 mgr / 50mL
M = 20 mgr / mL
Hence, the solution has a concentration 20 mgr in each mL of the final solution.
Find more on concentration at: brainly.com/question/17206790
#SPJ4
Answer:
The answer to your question is: Nitrogen
Explanation:
Organic molecules that are part of living organisms are composed by
Carbon, Hydrogen, Oxygen, Nitrogen, Phosphorus and Sulphur.
The elements available in more quantity are Carbon, Hydrogen and Oxygen.
Nitrogen is present in proteins and nucleic acids.
B. the number of organisms in a population that an ecosystem can sustain