Wave A has a higher amplitude than Wave B.
Explanation:
The original acceleration is:
∑F = ma
10 N = (5 kg) a
a = 2 m/s²
If the mass is tripled, the new acceleration is:
∑F = ma
10 N = (15 kg) a
a = 0.67 m/s²
The acceleration is reduced by a factor of 3.
The statements from both Technicians A and B are correct.
Answer: Option C
<u>Explanation:</u>
A typical MAP sensors comprises with a ceramic or silicon wafers, sealed with an ideal vacuum on one side and a suction manifold on the other. When the engine (motor) vacuum varies, the differential pressure across the board changes the output voltage or frequency to the MAP sensor. So, sensor vacuum to be increased if injection pulse widths increase.
Most pressure sensors operate at 5 volts from a computer and return a signal (voltage or frequency) based on the pressure applied to the sensor (vacuum). When testing the MAP sensor, make sure that the vacuum hose and hose connections are tightly connected to the engine vacuum source. According to this, concluding that the statements from both technicians are correct.
Answer:
Speed, u = 29.4 m/s
Explanation:
Given that, A ball thrown straight up climbs for 3.0 sec before falling, t = 3 s
Let u is speed with which the ball is thrown up. When the ball falls, v = 0
Using first equation of motion as :
v = u + at
Here, a = -g
So, u = g × t

u = 29.4 m/s
So, the speed with which the ball was thrown is 29.4 m/s. Hence, this is the required solution.
The answer is "the product of the object's moment of inertia and the object's angular velocity.