Answer:
The vehicle displacement is 9.90 feet.
Explanation:
Given that,
Height of tree = 4.5 feet
Distance = 33 feet
According to figure,
We need to calculate the value of l
Using Pythagorean theorem

We need to calculate the vehicle displacement
Using horizontal component
Vehicle displacement =horizontal component of pulled rope

Where,
is angle between rope and ground
d = pulled length of rope


Hence, The vehicle displacement is 9.90 feet.
Explanation:
HEY PLS DON'T JOIN THE ZOOM CALL OF A PERSON WHO'S ID IS 825 338 1513 (I'M NOT SAYING THE PASSWORD) HE IS A CHILD PREDATOR AND A PERV. HE HAS LOTS OF ACCOUNTS ON BRAINLY BUT HIS ZOOM NAME IS MYSTERIOUS MEN.. HE ASKS FOR GIRLS TO SHOW THEIR BODIES AND -------- PLEASE REPORT HIM IF YOU SEE A QUESTION LIKE THAT. WE NEED TO TAKE HIM DOWN!!! PLS COPY AND PASTE THIS TO OTHER COMMENT SECTIONS!!
Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Answer: When the flashlight is turned on, the chemical energy stored in batteries is converted into electrical energy that flows through wires of flashlight. This electrical energy is then transformed into light and heat energies.
Explanation:
Answer: c. the molecules with the highest energy evaporate first, lowering the temperature of the sample
Explanation:
The process by which liquid starts to change into vapor phase at any temperature is known as evaporation.
During evaporation , the molecules which possess higher energies escape from the upper layer into vapor phase. the molecules which escape draw energy from surroundings and thus decrease the energy of the surroundings and hence lead to decrease in temperature.
As temperature of the system is directly proportional to the energy of the system , thus decrease in energy leads to decrease in temperature.

K.E. = Kinetic energy
T = temperature
R= gas constant