Answer:

Explanation:
From the question we are told that:
Mass 
Deviation 
Time 
Generally the equation for moment of inertia is mathematically given by



Explanation:
What exactly are u looking for?
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
The answer is Rh = 135 cm^3 and B = 0.05185 wh/m^2
Explanation:
Resitivity of silicon = 0.1
thickness = 100um
so, I = ma
Required to find out concentration of electron , we know that
Rh = up
By putting in the values,
Rh = 1350 x 0.1
Rh = 135 cm^3
Now consider,
Rh = 1 / Rh.q
= 1 / Rh . q
= 1 / 135 x1.609 x10^-19
= 4.6037 x 10^16 / cm^3
Vh = BIRh / w
B = Vh w/ IRh
B = -70 x10^-6 x 100 x10^-6 / 1x 10^-3 x 135 x 10^-6
B = 0.05185 wh / m^2