Answer:
x=43 (being vertically opposite angles
Step-by-step explanation:
Answer:
B- One-Quarter
Step-by-step explanation:
Answer:
see graph...
B On a coordinate plane, a line goes through (0, 0) and (1, negative 4).
Step-by-step explanation:
Answer:
A) A[p(t)] = 36πt²
B) 7234.56 square units
Step-by-step explanation:
<u>Given functions</u>:

<u>Part A</u>
To find the area of the circle of spilled paint as a function of time, substitute the function p(t) into the given function A(p):
![\begin{aligned}A(p) & = \pi p^2\\\\ \implies A[p(t)] & = \pi [p(t)]^2\\& = \pi (6t)^2\\& = \pi 6^2 t^2\\& = 36\pi t^2\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DA%28p%29%20%26%20%3D%20%5Cpi%20p%5E2%5C%5C%5C%5C%20%5Cimplies%20A%5Bp%28t%29%5D%20%26%20%3D%20%5Cpi%20%5Bp%28t%29%5D%5E2%5C%5C%26%20%3D%20%5Cpi%20%286t%29%5E2%5C%5C%26%20%3D%20%5Cpi%206%5E2%20t%5E2%5C%5C%26%20%3D%2036%5Cpi%20t%5E2%5Cend%7Baligned%7D)
<u>Part B</u>
Given
Substitute the given values into the equation for A[p(t)} found in part A:
![\begin{aligned}A[p(8)] & = 36\pi t^2\\& = 36 \cdot 3.14 \cdot 8^2\\& = 36 \cdot 3.14 \cdot 64\\& = 113.04 \cdot 64\\& = 7234.56\:\: \sf square\:units\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DA%5Bp%288%29%5D%20%26%20%3D%2036%5Cpi%20t%5E2%5C%5C%26%20%3D%2036%20%5Ccdot%203.14%20%5Ccdot%208%5E2%5C%5C%26%20%3D%2036%20%5Ccdot%203.14%20%5Ccdot%2064%5C%5C%26%20%3D%20113.04%20%5Ccdot%2064%5C%5C%26%20%3D%207234.56%5C%3A%5C%3A%20%5Csf%20square%5C%3Aunits%5Cend%7Baligned%7D)
Therefore, the area of spilled paint after 8 minutes if 7234.56 square units.
Answer:
A) 
General Formulas and Concepts:
<u>Calculus</u>
Discontinuities
- Removable (Hole)
- Jump
- Infinite (Asymptote)
Integration
- Integrals
- Definite Integrals
- Integration Constant C
- Improper Integrals
Step-by-step explanation:
Let's define our answer choices:
A) 
B) 
C) 
D) None of these
We can see that we would have a infinite discontinuity if x = 2/3, as it would make the denominator 0 and we cannot divide by 0. Therefore, any interval that includes the value 2/3 would have to be rewritten and evaluated as an improper integral.
Of all the answer choices, we can see that A's bounds of integration (interval) includes x = 2/3.
∴ our answer is A.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e