Answer:
a) the first vector has magnitude 58 cm and the angle is 15 measured clockwise from the positive side of the x-axis
b) the second vector, the magnitude is 55.7 cm and the angle is 35 half from the negative side of the x-axis in a clockwise direction
c) the magnitude is 54.2 cm with an angle of 18 measured counterclockwise from the x-axis
Explanation:
For this exercise we draw a Cartesian coordinate system in this system: East coincides with the positive part of the x-axis and North with the positive part of the y-axis.
a) the first vector has magnitude 58 cm and the angle is 15 measured clockwise from the positive side of the x-axis
b) the second vector, the magnitude is 55.7 cm and the angle is 35 half from the negative side of the x-axis in a clockwise direction
c) the magnitude is 54.2 cm with an angle of 18 measured counterclockwise from the x-axis
In the attachment we can see the representation of the three vectors
Answer:
a. the core will spin faster.
Explanation:
By law of conservation of angular momentum
(mvR)i= (mvR)f
m= mass of star
v= speed of star
R= radius of star
i= initial
f= final
since, size(R) of the star is reduced by factor of 10,000 and mass remains the same, the velocity must increase by the same factor to keep the angular momentum conserved.
Hence, a. the core will spin faster.
A method for improving your memory…
Answer:
Planet C
Explanation:
The figure of the problem is missing: find it in attachment.
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have four planets around planet X, and the mass of each planet is proportional to its size in the figure.
As we can see from the previous equation, the magnitude of the gravitational force is proportional to the mass of the planets: therefore, the planet with largest mass will exert the largest gravitational force on planet X.
From the figure, we see that planet C has the largest size, so the largest mass: therefore, planet C exerts the greatest gravitational force on planet X.
Answer:
h≅ 58 m
Explanation:
GIVEN:
mass of rocket M= 62,000 kg
fuel consumption rate = 150 kg/s
velocity of exhaust gases v= 6000 m/s
Now thrust = rate of fuel consumption×velocity of exhaust gases
=6000 × 150 = 900000 N
now to need calculate time t = amount of fuel consumed÷ rate
= 744/150= 4.96 sec
applying newton's law
M×a= thrust - Mg
62000 a=900000- 62000×9.8
acceleration a= 4.71 m/s^2
its height after 744 kg of its total fuel load has been consumed


h= 58.012 m
h≅ 58 m