Answer:
$520
Step-by-step explanation:
20%
=0.2
0.2*650
=130
650-130
=520
Proving a relation for all natural numbers involves proving it for n = 1 and showing that it holds for n + 1 if it is assumed that it is true for any n.
The relation 2+4+6+...+2n = n^2+n has to be proved.
If n = 1, the right hand side is equal to 2*1 = 2 and the left hand side is equal to 1^1 + 1 = 1 + 1 = 2
Assume that the relation holds for any value of n.
2 + 4 + 6 + ... + 2n + 2(n+1) = n^2 + n + 2(n + 1)
= n^2 + n + 2n + 2
= n^2 + 2n + 1 + n + 1
= (n + 1)^2 + (n + 1)
This shows that the given relation is true for n = 1 and if it is assumed to be true for n it is also true for n + 1.
<span>By mathematical induction the relation is true for any value of n.</span>
Answer:
3.
Step-by-step explanation:
Implicit differentiation:
x^2 y + (xy)^3 + 3x = 0
x^2 y + x^3y^3 + 3x = 0
Using the product rule:
2x* y + x^2*dy/dx + 3x^2 y^3 + x^3* (d(y^3)/dx) + 3 = 0
2xy + x^2 dy/dx + 3x^2 y^3 + x^3* 3y^2 dy/dx + 3 = 0
dy/dx(x^2 + 3y^2x^3) = (-2xy - 3x^2y^3 - 3)
dy/dx= (-2xy - 3x^2y^3 - 3) / (x^2 + 3y^2x^3)
At the point (-1, 3).
the derivative = (6 - 81 - 3)/(1 -27)
= -78/-26
= 3.
Answer:
no
Step-by-step explanation:
there is not one point that is very distant from all of the other ones