Answer:
2A
Explanation:
Voltage = Current * Resistance
V= I*R
I=V/R
I = 24/12 = 2A.
The component of the total velocity in the x - direction is 6.96 m/s.
The component of the total velocity in the y - direction is 2.95 m/s.
<h3>
Component of the velocity in x direction </h3>
The component of the total velocity in the x - direction is calculated as follows;
v(x) = vtot cosθ
where;
- vtot is total velocity
- v(x) is velocity in x direction
v(x) = 7.56 x cos(23)
v(x) = 6.96 m/s
<h3>
Component of the velocity in y - direction</h3>
v(y) = vtot sinθ
v(y) = 7.56 x sin(23)
v(y) = 2.95 m/s
Learn more about component velocity here: brainly.com/question/24681896
#SPJ1
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
The distance is 28 meters and the direction of displacement is East I think
Answer:
Newton's first law of motion states that an object at rest will remain at rest and an object in motion will remain in motion unless it is acted on by an unbalanced force. Using unbalanced forces to control the motion of a skateboard demonstrates Newton's first law of motion.
Hope it helps