The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
A material you are testing conducts electricity but cannot be pulled into wires. It is most likely a metalloid. Hope this helps!
Answer:
false
Explanation:
the answer is false bc for a non-polar bond to form the electrons are shared equally...
5.625 hours and it is 450 divided by 80
Have A Good Day
Answer: a) 8.2 * 10^-8 N or 82 nN and b) is repulsive
Explanation: To solve this problem we have to use the Coulomb force for two point charged, it is given by:

Replacing the dat we obtain F=82 nN.
The force is repulsive because the points charged have the same sign.