It can be an element or a compound
Answer : The correct option is, (b) +0.799 V
Solution :
The values of standard reduction electrode potential of the cell are:
![E^0_{[H^{+}/H_2]}=+0.00V](https://tex.z-dn.net/?f=E%5E0_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D%3D%2B0.00V)
![E^0_{[Ag^{+}/Ag]}=+0.799V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.799V)
From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half reaction will be:
Reaction at anode (oxidation) :
Reaction at cathode (reduction) :
The balanced cell reaction will be,

Now we have to calculate the standard electrode potential of the cell.

![E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}](https://tex.z-dn.net/?f=E%5Eo_%7Bcell%7D%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D)

Therefore, the standard cell potential will be +0.799 V
Answer:
no
Explanation:
it is a molecular formula that represents the number atoms and type of atoms
Answer:
<h2>This is <u>TRUE</u><u> </u>statement... </h2>
<u>Explanation</u><u>:</u><u> </u>
When you remove or add a neutron to the nucleus of an atom, the resulting substance is a new type of the same element and is called an isotope.
<h2><em><u>Hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em><em><u>you</u></em><em><u>✨</u></em><em><u>.</u></em></h2>
<em><u>Thanks</u></em><em><u>☸</u></em><em><u>☸</u></em>
Answer:
The statement "Six turns of the cycle are required for every glucose molecule later produced in non–Calvin cycle reactions" is incorrect. It really looks not well-worded.
Explanation:
It is incorrect because Six turns of the cycle are required for every glucose molecule produced in Calvin cycle reactions, no in non-Calvin cycle reactions. This process includes the fixation of 6 molecules of carbon dioxide to produce 1 Glucose (seen as the addition of the two Phosphoglyceraldehide molecules (PGAL). Moreover, the other statements in the questions are correct:
ATP is required during carbon fixation.
The most intensive energy phase is reduction and sugar production.
Twelve NADPH are required for every six CO2 fixed.
NADPH is required for reduction and sugar production.