Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.
Mabye yurrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Hello,
I'm not very sure but I think the correct answer is D) Water Wave
I really hope this helps!!!! Happy Holidays!!!! (:
Answer:
The overview of the subject is outlined underneath in the summary tab.
Explanation:
- The molar ratio seems to be essentially a balanced chemical equilibrium coefficient that implies or serves as a conversion factor for the product-related reactants.
- This ratio just says the reactant proportion which reacts, but not the exact quantity of the reacting product. Consequently, the molar ratio should only be used to provide theoretical instead of just a definite mass ratio.
Answer:
364 K or 91°C
Explanation:
Applying,
V₁/T₁ = V₂/T₂................ Equation 1
Where V₁ = Initial Volume, V₂ = Final volume, T₁ = initial Temperature, T₂ = final Temperature.
make T₂ the subject of the equation,
T₂ = V₂T₁/V₁................. Equation 2
From the question,
Given: V₁ = 375 mL, V₂ = 500 mL, T₁ = 0.0°C = (273+0) K = 273 K
Substitute these values into equation 2
T₂ = (500×273)/375
T₂ = 364 K
T₂ = (364-273) °C = 91 °C