Answer:
a) The current density ,J = 2.05×10^-5
b) The drift velocity Vd= 1.51×10^-15
Explanation:
The equation for the current density and drift velocity is given by:
J = i/A = (ne)×Vd
Where i= current
A = Are
Vd = drift velocity
e = charge ,q= 1.602 ×10^-19C
n = volume
Given: i = 5.8×10^-10A
Raduis,r = 3mm= 3.0×10^-3m
n = 8.49×10^28m^3
a) Current density, J =( 5.8×10^-10)/[3.142(3.0×10^-3)^2]
J = (5.8×10^-10) /(2.83×10^-5)
J = 2.05 ×10^-5
b) Drift velocity, Vd = J/ (ne)
Vd = (2.05×10^-5)/ (8.49×10^28)(1.602×10^-19)
Vd = (2.05×10^-5)/(1.36 ×10^10)
Vd = 1.51× 10^-5
The ozone layer that is inside the stratosphere blocks UV radiation.
The ozone layer contains high concentrations of ozone relative to other parts of the atmosphere. This was discovered by Charles Fabry and Henri Buisson who are both French Physicists.
The ozone in the earth's stratosphere is created through ultraviolet light striking a group of ordinary oxygen molecules containing two oxygen atoms, subsequently splitting them into individual oxygen atoms and finally these said atomic oxygen then combines with unbroken O2 to create ozone (O3).
Answer:
Explanation:In Mendel's time, many people thought that offspring inherited a combination of traits from their parents. For example, they thought that an animal with white fur and an animal with black fur would produce pups with gray fur. This is called the theory of combined inheritance. How did Mendel show that the combination theory was wrong?
The energy of the wave will decrease.
The energy of a wave is given as
E = h f
where E = energy of waver
h = plank's constant
f = frequency of the wave.
From the formula , we see that the energy of the wave is directly proportional to the frequency of the wave. hence as the frequency of the wave decrease, the energy of the wave will decrease.
Answer:
lThe effect of the attraction of the earth on a bigger stone can be observed more than the effect of attraction of the earth on a smaller one. hence it is difficult to lift a large stone than the smaller one on the earth surface.