Answer:
Fn: magnitude of the net force.
Fn=30.11N , oriented 75.3 ° clockwise from the -x axis
Explanation:
Components on the x-y axes of the 17 N force(F₁)
F₁x=17*cos48°= 11.38N
F₁y=17*sin48° = 12.63 N
Components on the x-y axes of the the second force(F₂)
F₂x= −19.0 N
F₂y= 16.5 N
Components on the x-y axes of the net force (Fn)
Fnx= F₁x +F₂x= 11.38N−19.0 N= -7.62 N
Fny= F₁y +F₂y= 12.63 N +16.5 N = 29.13 N
Magnitude of the net force.



Direction of the net force (β)

β=75.3°
Magnitude and direction of the net force
Fn= 30.11N , oriented 75.3 ° clockwise from the -x axis
In the attached graph we can observe the magnitude and direction of the net force
In other words, it would take Deep Space 1 more than 81,000 years to travel the 4.24 light-years between Earth and Proxima Centauri at its top speed of 56,000 km/h. In relation to human history, that would be more than 2,700 generations.
Nearly 40 trillion kilometers, or 4.4 light-years, separate us from Alpha Centauri. The NASA-Germany Helios probes, the fastest spacecraft to date to be launched into orbit, flew at a speed of 250,000 kilometers per hour. The probes would need 18,000 years to travel at such pace to arrive at the sun's nearest neighbor. The calculations reveal that it is almost impossible to reach the nearest star in a human lifetime, even with the most futuristic technologies.
Learn more about Light year here-
brainly.com/question/1302132
#SPJ4
Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
Answer:
83.67 m/s
Explanation:
Set up a calculation to convert units of measure to what you need.
You have km/s and you need m/s.
4.08km 1000 m 83.67m
----------- X ---------- = --------------- the km will cancel out and you are left
12.0 s 1 km s with m/s