It is not parallel. The fact that there is more space between the lines on one side than the other (mk is shorter than nL) shows that the lines must be angled differently, and thus, would eventually intersect.
See the attached image below for the dot plot. The center is at 8 with dots on either side of 8 being a mirror copy of one another. For example, there are 2 dots over 6 and 2 dots over 10
<h3>Answer: B. The data is symmetrical</h3>
Answer:
∠BKM= ∠ABK
Therefore AB ║KM (∵ ∠BKM= ∠ABK and lies between AB and KM and BK is the transversal line)
m∠MBK ≅ m∠BKM (Angles opposite to equal side of ΔBMK are equal)
Step-by-step explanation:
Given: BK is an angle bisector of Δ ABC. and line KM intersect BC such that, BM = MK
TO prove: KM ║AB
Now, As given in figure 1,
In Δ ABC, ∠ABK = ∠KBC (∵ BK is angle bisector)
Now in Δ BMK, ∠MBK = ∠BKM (∵ BM = MK and angles opposite to equal sides of a triangle are equal.)
Now ∵ ∠MBK = ∠BKM
and ∠ABK = ∠KBM
∴ ∠BKM= ∠ABK
Therefore AB ║KM (∵ ∠BKM= ∠ABK and BK is the transversal line)
Hence proved.
B. 4(6x) and 24x.
Hope this helps!
Answer:
a = 2(vt -d)/t^2
Step-by-step explanation:
Add the term containing "a":
d + a(t^2/2) = vt
Subtract d:
a(t^2/2) = vt -d
Multiply by the inverse of the coefficient of "a":
a = 2(vt -d)/t^2