Answer:
b. primitive cubic < body-centered cubic < face-centered cubic
Explanation:
The coordination number is defined as <em>the number of atoms (or ions) surrounding an atom (or ion) in a crystal lattice</em>. Its value gives us a measure of how tightly the spheres are packed together. The larger the coordination number, the closer the spheres are to each other.
- In the <u>primitive cubic</u>, each sphere is in contact with 6 spheres, so its <u>coordination number is 6</u>.
- In the <u>body-centered cubic</u>, each sphere is in contact with 8 spheres, so its <u>coordination number is 12</u>.
- In the <u>face-centered cubic</u>, each sphere is in contact with 12 spheres, so its <u>coordination number is 12</u>.
Therefore, the increasing order in density is the primitive cubic first, then the body-centered cubic, and finally the face-centered cubic.
Answer: 0.405g
Explanation:
Molar Mass of Be = 9g/mol
Number of mole of Be = 0.045mol
Mass conc. Of Be = 0.045 x 9 = 0.405g
1. For this question, the adjective small must be percepted in a relative sense. This is because it is not the smallest ion (that would be hydrogen). It could be that the antimony and beryllium ions are smaller compared to their neutral forms. This is because they donate electrons when ionized. As a result, the electrons are reduced, so does the electron cloud which makes the radius much smaller.
2. The periodic table is arranged in terms of increasing atomic number. For neutral atoms, the number of protons (atomic number) is equal to the number of electrons. So, the farther we go down the table, the higher the atomic number. The higher the atomic number, the bigger the electron cloud which makes the atomic radius bigger. Because by definition, atomic radius is the length from the nucleus to the farthest electron from the nucleus.
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.
Homogeneous or heterogeneous, Hope this helps!!