c the temperature is increased?5)
Answer:

![[H^+]=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D5x10%5E%7B-13%7DM)
![[OH^-]=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.02M)
Explanation:
Hello there!
In this case, according to the given ionization of magnesium hydroxide, it is possible for us to set up the following reaction:

Thus, since the ionization occurs at an extent of 1/3, we can set up the following relationship:
![\frac{1}{3} =\frac{x}{[Mg(OH)_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20%3D%5Cfrac%7Bx%7D%7B%5BMg%28OH%29_2%5D%7D)
Thus, x for this problem is:
![x=\frac{[Mg(OH)_2]}{3}=\frac{0.03M}{3}\\\\x= 0.01M](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5BMg%28OH%29_2%5D%7D%7B3%7D%3D%5Cfrac%7B0.03M%7D%7B3%7D%5C%5C%5C%5Cx%3D%20%200.01M)
Now, according to an ICE table, we have that:
![[OH^-]=2x=2*0.01M=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2x%3D2%2A0.01M%3D0.02M)
Therefore, we can calculate the H^+, pH and pOH now:
![[H^+]=\frac{1x10^{-14}}{0.02}=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5Cfrac%7B1x10%5E%7B-14%7D%7D%7B0.02%7D%3D5x10%5E%7B-13%7DM)

Best regards!
In order to maintain neutrality, the negatively charged ions in the salt bridge will migrate into the anodic half-cell. A similar (but reversed) situation is found in the cathodic cell.
<h3>
What purpose does a salt bridge serve in an oxidation process?</h3>
Anions (negatively charged particles) are added to the solution of the oxidation half of the cell by the salt bridge, and cations (positively charged particles) are added to the solution of the reduction half of the reaction.
<h3>
What purpose does the salt bridge serve in a galvanic cell?</h3>
For instance, KCl, AgNO3, etc. In a galvanic cell, such as a voltaic cell or Daniel cell, salt bridges are typically used. A salt bridge's primary job is to assist in preserving the electrical neutrality of the internal circuit. Additionally, it aids in keeping the cell's response from reaching equilibrium.
Learn more about Salt bridge here:-
brainly.com/question/20345420
#SPJ4
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped :D
Abiotic factors, also called abiotic components, are non-living parts of the environment which affects the living organisms and their function in the ecosystem. I think the correct answer is A. Wind factor is the only non-living part from the choices.