Explanation:
Yes, it is possible to have zero speed while accelerating, but only for a moment. ... acceleration is the rate at which the speed and direction of an object changes over time, so whenever an object goes through zero speed while reversing directions, it has non-acceleration. zero but a speed of zero.
Answer:
Is Mercury an answer on your thing?
Explanation:
Mercury has the least amount of gravity, so therefore you can jump the highest on Mercury.
Answer:
R = 3.88 m
Explanation:
As the Chinook salmon leaves the water till it gets back into the water it is performing a projectile motion with the following parameters:
V₀ = Launch Speed = 6.7 m/s
θ = Launch Angle = 29°
R= Range of Projectile= Horizontal Distance Covered by Chinook salmon= ?
The value of the range of a projectile is given by the following formula:
R = (V₀² Sin 2θ)/g
R = [(6.7 m/s)² Sin {(2)(29°)}/(9.8 m/s²)]
R = [(6.7 m/s)² Sin (58°)/(9.8 m/s²)]
<u>R = 3.88 m</u>
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.