Answer:
In one rotation, the large wheel turns 4m.
Explanation:
The given values are:
Input distance,
= 0.64 m
Mechanical advantage,
= 0.16
As we know,
⇒ 
On putting the values, we get
⇒ 
⇒
Explanation:
Since, it is given that one hand completes 3.19 vibrations in 8.46 sec. Therefore, in one second the number of vibrations will be as follows.

= 0.377 vibrations
Hence, frequency (f) = 0.38 Hz
Now, formula to calculate the speed is as follows.
v = 
or,
= 
= 1.57 cm
Thus, we can conclude that the wavelength is 1.57 cm.
Answer:
Work, W = 846.72 Joules
Explanation:
Given that,
Mass of the watermelon, m = 4.8 kg
It is dropped from rest from the roof of 18 m building. We need to find the work done by the gravity on the watermelon from the roof to the ground. It is same as gravitational potential energy i.e.
W = mgh
W = 846.72 Joules
So, the work done by the gravity on the watermelon is 846.72 Joules. Hence, this is the required solution.
Answer:
Approximately
.
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (
) is equal to
.
There are two half-reactions in this question.
and
. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of
should be positive.
In this case,
is positive only if
is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to
.
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
is the number moles of electrons transferred for each mole of the reaction. In this case the value of
is
as in the half-reactions.
is Faraday's Constant (approximately
.)
.