Answer:

Explanation:
Information Given:

Key: μ = Kinetic Friction (Kf) θ = Theta α = 180° N = Normal Force
θ
θ
θ-μ

θ
θ-μ
θ-μ
θ
→


Answer:
The Liver, Pancreas and Gall Bladder are involved in the process of delivering the digestive juices for the Intestines
Explanation:
Answer:
D. Newton's Third Law of Motion
Explanation:
Newton's law of gravity is definitely not applicable to your hands. So we can cross this bad boy out
Newton's First Law is F=MA (force equals mass times acceleration). This is basically the root of most physics but it isn't the reason for your hand being red after hitting a wall.
Newton's Second law deals with velocities and forces, so even though you are apply a force your are not changing the velocity of the wall much.
Newton's Third Law basically says that for whatever force you apply to an object, that object will apply an equal and opposite force back to you. This is why your hand gets red. When you slap the wall with all your strength, the wall hits your hand back with the same amount of force. The 2nd law can also be seen when you're trying to push a desk and it won't budge. You are pushing on it, but the desk is pushing back. (there are multiple other factors applicable like friction but we physicists like to ignore them :) )
I hope this helps!
For the answer to the question above, i<span>n </span>direct current<span> (</span>DC<span>), the </span>electric charge<span> (</span>current)only flows<span> in one direction. </span>Electric charge<span> in alternating </span>current<span> (AC), on the other hand, changes direction periodically. The voltage in AC circuits also periodically reverses because the </span>current<span> changes direction. So my answer is A.</span>
Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s