Ok so velocity is speed but includes direction. The formula for both speed velocity is distance over time. so the equation is 387 over 8.5. That equals 45.5294117647 which can be rounded to 46.
I think its Helium correct me if I'm wrong plz.
Explanation:
The given reaction is as follows.
![E + S \rightleftharpoons ES \xrightarrow[]{k_{2}} E + P](https://tex.z-dn.net/?f=E%20%2B%20S%20%5Crightleftharpoons%20ES%20%5Cxrightarrow%5B%5D%7Bk_%7B2%7D%7D%20E%20%2B%20P)
Here, [E] = triose phosphate isomerase = 0.1 
[S] = Dihydroxy acetone phosphate = 5 
[P] = Glyceraldehyde-3-phosphate = 2 
Therefore, velocity of the reaction will be as follows.
v =
= ![\frac{K_{2}[E][S]}{K_{M} + [S]}](https://tex.z-dn.net/?f=%5Cfrac%7BK_%7B2%7D%5BE%5D%5BS%5D%7D%7BK_%7BM%7D%20%2B%20%5BS%5D%7D)
where,
= Michaelic menten constant = 
v = 
= 
or, = 30 nm/s
Hence, we can conclude that the actual velocity of the forward reaction under physiologic conditions if KM = 10 μM is 30 nm/s.
Answer:
the one with the lower ionization energy is more likely to be positive as it is easier to remove the valence electron that causes the positive charge
element a is likely in the s block as that is a low ionization energy and they get larger as you move up and to the R in the table
and element b is likely in the p block for the same reason
Explanation:
Answer:
65
Explanation:
estion
Al comenzar la reacción: N2(g) + 2O2(g) ------> 2NO2(g) existe 1 mol de N2 y 2 moles de O2 y al
finalizarla está presente una mezcla formada por 2,2 moles en total, ¿cuál es el rendimiento para la
reacción?