1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
2 years ago
5

Our solar system consits of eight planets. Which phrase correctly describes a planet?

Chemistry
2 answers:
bearhunter [10]2 years ago
8 0

B. (twenty characters blah blah blah) Have a great day/night!

LuckyWell [14K]2 years ago
3 0
B lol the answer is b have a good day
You might be interested in
Photosynthesis by land plants leads to the fixation each year of about 1 kg of carbon on the average for each square meter of an
Rama09 [41]

Answer:

a) mass of carbon directly above 1 ( each)  square meter of the earth is 1.65kg

b) all CO₂ will definitely be used up from the atmosphere directly above a forest in 1.65 years

Explanation:

first we calculate the moles of carbon

moles = mass/molar mass

= 1kg/12gmol⁻¹

= 1000g/12gmol⁻¹

= 83.33 mol

now using the ideal gas equation

we find the volume of co₂required based on 83.33 moles

PVco₂ = nRT

Vco₂ = nRT/P

Vco₂ = (83.22mol × 0.0821L atm k⁻¹ mol⁻¹ 298 K) / 1 atm

Vco₂ = 2083.73 L

so since CO₂ in air is 0.0390% by volume in the atmosphere, we find the the total amount of air required to obtain 1kg carbon

therefore

Vair × 0.0390/100 = 2038.73L

Vair = (2038.73L × 100) / 0.0390

Vair = 5.23 × 10⁶L

therefore 5.23 × 10⁶ L of air will be required to obtain 1kg carbon

a)

Here we calculate the mass of air over 1 square meter of surface.

Remember that atmospheric pressure is the consequence of the force exerted by all the air above the surface; 1 bar is equivalent to 1.020×10⁴kgm⁻²

NOW

mass of air = 1.020×10⁴kgm⁻² × 1m²

= 1.020×10⁴kg

= 1.020×10⁷g    [1kg = 10³g]

we now find the moles of air associated with it

moles = mass/molar mass

= 1.020 × 10⁷g / ( 20%×Mo₂ + 80%×Mn₂)

= 1.020 × 10⁷g / ( 20%×32gmol⁻¹ + 80%×28gmol⁻¹)

= 1.020 × 10⁷g / 28.8 gmol⁻¹

= 354166.67mol

so based on the question, for each mole (air), there is 0.0390% of CO₂

now to calculate the moles of CO₂ we say;

MolesCo₂ = 0.0390/100 × 354166.67mol

= 138.125 moles

Now we calculate mass of CO₂ from the above findings

Moles = mass/molar mass

mass = moles × molar mass

= 138.125 moles × 12gmol⁻¹

= 1657.5g

we covert to KG

= 1657.5g / 1000

mass = 1.65kg

therfore mass of carbon directly above 1 ( each)  square meter of the earth is 1.65kg

b)

to find the number years required to use up all the CO₂, WE SAY

Number of years = total carbon per m² of the forest / carbon used up per m² from the forest per year

Number of years = 1.65kgm⁻² / 1kg²year⁻¹

Number of years = 1.65 years

Therefore all CO₂ will definitely be used up from the atmosphere directly above a forest in 1.65 years

6 0
3 years ago
True or False: The average atomic mass is always closer to the isotope with the smallest mass
SashulF [63]
True hoped I help ☺☺☺☺
5 0
3 years ago
Please help me fast because I’m being timed!!
Sergio [31]

Answer:

i cant see

Explanation:

5 0
3 years ago
An unknown compound with a molar mass of 223.94 g/mol consists of 32.18% c, 4.50% h, and 63.32% cl. find the molecular formula f
Dima020 [189]

The actual number of atoms of each element present in the molecule of the compound is represented by the formula known as molecular formula.

Molar mass of the unknown compound = 223.94 g/mol (given)

Mass of each element present in the unknown compound is determined as:

  • Mass of carbon, C:

\frac{32.18}{100}\times 223.94 = 72.06 g

  • Mass of hydrogen, H:

\frac{4.5}{100}\times 223.94 = 10.08 g

  • Mass of chlorine, Cl:

\frac{63.32}{100}\times 223.94 = 141.79 g

Now, the number of each element in the unknown compound is determined by the formula:

number of moles = \frac{given mass}{molar mass}

  • Number of moles of C:

number of moles = \frac{72.06}{12} = 6.005 mole\simeq 6 mole

  • Number of moles of H:

number of moles = \frac{10.08}{1} = 10.08 mole\simeq 10 mole

  • Number of moles of Cl

number of moles = \frac{141.79}{35.5} = 3.99 mole\simeq 4 mole

Dividing each mole with the smallest number of mole, to determine the empirical formula:

C_{\frac{6}{4}}H_{\frac{10}{4}}Cl_{\frac{10}{4}}

C_{1.5}H_{2.5}Cl_{1}

Multiplying with 2 to convert the numbers in formula into a whole number:

So, the empirical formula is C_{3}H_{5}Cl_{2}.

Empirical mass = 12\times 3+1\times 5+2\times 35.5 = 112 g/mol

In order to determine the molecular formula:

n = \frac{molar mass}{empirical mass}

n = \frac{223.94}{112} = 1.99 \simeq 2

So, the molecular formula is:

2\times C_{3}H_{5}Cl_{2} =  C_{6}H_{10}Cl_{4}

6 0
3 years ago
How many atoms are in 0.750 moles of zinc?
motikmotik
(doesn't really matter that it's zinc :) )
It is 0.75*N_A, where N_A=6.023*10^{23} (in some books 6.022).
7 0
3 years ago
Read 2 more answers
Other questions:
  • A gamma ray primarily consists of pure energy and no mass. True False
    8·1 answer
  • An apple pudding is prepared by combining apples, sugar, butter, and lemon juice. To which category does it belong?
    8·2 answers
  • Which of the following is NOT a symbol for an element? H Li Pb HF
    7·2 answers
  • The diagram shows the direction of oxygen transfer from red blood cells to body cells.
    7·1 answer
  • Which of the following represents a decomposition reaction? A. AC + B → AB + C B. A + B + C → ABC C. ABC → A + B + C D. AB + CD
    11·1 answer
  • The mass of a golf ball is 45.9 g . If it leaves the tee with a speed of 61.0 m/s , what is its corresponding wavelength?
    13·1 answer
  • The standard free energy of formation, ΔG∘f, of a substance is the free energy change for the formation of one mole of the subst
    13·1 answer
  • PLEASE HELP ME !!!!!!!
    12·1 answer
  • What color are the stars on the diagram with the lowest surface temperatures?
    7·1 answer
  • Question 3 of 25
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!