14,200 because all you have to do to solve this is multiply 14.2 kilometers by 1,000 meters to find the distance that he walks.
Calcium forms an ion with a positive 2 charge and chlorine forms an ion with a negative one charg, so the formula is <span>CaC<span>l2</span></span>
Group 1 metals and group 2 metals form positive ions by losing 1 and 2 electrons respectively. Non-metals in group 17 gain 1, group 16 gain 2 and group 15 gain 3. Elements which lose electrons form positive ions while elements that gain electrons form negative ions.
To write a formula, you must balance charges so the overall charge is zero. A simple way to do this is to swap the # of the ion's charge and make it the subscript of the other ion. However, leave off the number 1 and reduce to lowest whole number ratio.
Answer:
The answer to your question is 7.4 moles of Aluminum
Explanation:
Data
moles of Al = ?
moles of Al₂O₃ = 3.7
Balanced chemical reaction
4 Al + 3 O₂ ⇒ 2 Al₂O₃
To solve this problem use proportions and cross multiplication. Use the coefficients of the balanced chemical equation.
4 moles of Aluminum ----------------- 2 moles of Al₂O₃
x ----------------- 3.7 moles of Al₂O₃
x = (3.7 x 4) / 2
x = 14.8 / 2
x = 7.4 moles of Aluminum
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.
Answer:
2.64 ×
J
Explanation:
I think you should mark it a physics question instead but anyway.
---------------------------------------------------------------------------
The Planck equation should be applied:
E = hv , while E is energy of proton; h is Planck constant; and v is frequency.
E = 6.6 ×
× 4 × 
= 6.6 × 4 × 
= 2.64 ×
J