D IS THE ANSWER ❤︎❤︎❤︎spread love and share knowledge
Answer:

Solution:
Note: Refer the diagram


Drag coefficient data for selected objects table at
Hemisphere (open end facing flow), 
Substituting all parameters,

Then,
![\begin{aligned}&V_{b}=V_{w}-\left[\frac{2 F_{R}}{\rho\left(C_{D, w} A_{w}+C_{D, B} A_{b}\right)}\right]^{\frac{1}{2}} \dots\\&V_{w}=24 \times 1000 \times \frac{1}{3600}\\&V_{w}=6.67 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3DV_%7Bw%7D-%5Cleft%5B%5Cfrac%7B2%20F_%7BR%7D%7D%7B%5Crho%5Cleft%28C_%7BD%2C%20w%7D%20A_%7Bw%7D%2BC_%7BD%2C%20B%7D%20A_%7Bb%7D%5Cright%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cdots%5C%5C%26V_%7Bw%7D%3D24%20%5Ctimes%201000%20%5Ctimes%20%5Cfrac%7B1%7D%7B3600%7D%5C%5C%26V_%7Bw%7D%3D6.67%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
And the equation becomes,
![\begin{aligned}&V_{b}=6.67-\left[\frac{2 \times 5.52}{1.23(1.42 \times 1.17+1.2 \times 0.3)}\right]^{\frac{1}{2}}\\&V_{b}=6.67-2.11\\&V_{b}=4.56 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3D6.67-%5Cleft%5B%5Cfrac%7B2%20%5Ctimes%205.52%7D%7B1.23%281.42%20%5Ctimes%201.17%2B1.2%20%5Ctimes%200.3%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%26V_%7Bb%7D%3D6.67-2.11%5C%5C%26V_%7Bb%7D%3D4.56%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
Thus the floyds travels at
wind speed.
Answer:
Because IC microcomputers are smaller and more versatile than previous control mechanisms, they allow the equipment to respond to a wider range of input and produce a wider range of output. They can also be reprogrammed without having to redesign the control circuitry
Explanation:
Answer:
B. The thickness of the heated region near the plate is increasing.
Explanation:
First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.
From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.