1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
11

Will mark brainliest if correct

Engineering
1 answer:
bekas [8.4K]3 years ago
6 0

Answer: true

Explanation:

You might be interested in
Why is the lubrication system of an internal combustion engine equipped with an oil filter?
Ierofanga [76]

Answer:

to filter out any impurities such as metal shavings in the oil

6 0
3 years ago
____ grinders are used to grind diameters, shoulders, and faces much like the lathe is used for turning, facing, and boring oper
skelet666 [1.2K]

Answer:

Cylindrical

Explanation:

<em>A cylindrical grinder </em><em>is a tool for shaping the exterior of an item. Although cylindrical grinders may produce a wide range of forms, the item must have a central axis of rotation. Shapes such as cylinders, ellipses, cams, and crankshafts are examples of this.</em><em> Cylindrical grinding</em><em> machines are specialized grinding machines that are used to process cylinders, rods, and similar workpieces. The cylinders revolve in one direction between two centers, while the grinding wheel or wheels are close together and rotate in the other direction.</em>

8 0
2 years ago
An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa. Water is stirred b
irinina [24]

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

Download docx
4 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
3 years ago
I. Draw the velocity diagram for the instant shown and determine the velocity of
trapecia [35]

Answer:

?????????????????????????????????????

3 0
3 years ago
Other questions:
  • How do Solar Engineers Help Humans?<br> (2 or more sentences please)
    9·1 answer
  • Which utility program reads an assembly language source file and produces an object file?
    6·1 answer
  • Cool water at 15°C is throttled from 5(atm) to 1(atm), as in a kitchen faucet. What is the temperature change of the water? What
    7·1 answer
  • A car is stopped at an entrance ramp to a freeway; its driver is preparing to merge. At a certain moment while stopped, this dri
    10·1 answer
  • 2.31 LAB: Simple statistics Part 1 Given 4 integers, output their product and their average, using integer arithmetic. Ex: If th
    5·2 answers
  • What is the value of the energy (in Joules) stored by the mobile phone battery (capacity of 1.8 Ah), if it is rated at 3.7 V
    15·2 answers
  • (1) Estimate the specific volume in cm3 /g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the virial equation and compa
    10·1 answer
  • Please help on two I will give brainiest​
    13·2 answers
  • What does Enter key do?
    10·1 answer
  • What are the best collages for architectural learning?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!