Answer:
a) 358.8K
b) 181.1 kJ/kg.K
c) 0.0068 kJ/kg.K
Explanation:
Given:
P1 = 100kPa
P2= 800kPa
T1 = 22°C = 22+273 = 295K
q_out = 120 kJ/kg
∆S_air = 0.40 kJ/kg.k
T2 =??
a) Using the formula for change in entropy of air, we have:
∆S_air = ![c_p In \frac{T_2}{T_1} - Rln \frac{P_2}{P_1}](https://tex.z-dn.net/?f=%20c_p%20In%20%5Cfrac%7BT_2%7D%7BT_1%7D%20-%20Rln%20%5Cfrac%7BP_2%7D%7BP_1%7D)
Let's take gas constant, Cp= 1.005 kJ/kg.K and R = 0.287 kJ/kg.K
Solving, we have:
[/tex] -0.40= (1.005)ln\frac{T_2}{295} ln\frac{800}{100}[/tex]
![-0.40= 1.005(ln T_2 - 5.68697)- 0.5968](https://tex.z-dn.net/?f=%20-0.40%3D%201.005%28ln%20T_2%20-%205.68697%29-%200.5968)
Solving for T2 we have:
![T_2 = 5.8828](https://tex.z-dn.net/?f=%20T_2%20%3D%205.8828)
Taking the exponential on the equation (both sides), we have:
[/tex] T_2 = e^5^.^8^8^2^8 = 358.8K[/tex]
b) Work input to compressor:
![w_in = c_p(T_2 - T_1)+q_out](https://tex.z-dn.net/?f=%20w_in%20%3D%20c_p%28T_2%20-%20T_1%29%2Bq_out)
![w_in = 1.005(358.8 - 295)+120](https://tex.z-dn.net/?f=%20w_in%20%3D%201.005%28358.8%20-%20295%29%2B120)
= 184.1 kJ/kg
c) Entropy genered during this process, we use the expression;
Egen = ∆Eair + ∆Es
Where; Egen = generated entropy
∆Eair = Entropy change of air in compressor
∆Es = Entropy change in surrounding.
We need to first find ∆Es, since it is unknown.
Therefore ∆Es = ![\frac{q_out}{T_1}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bq_out%7D%7BT_1%7D)
![\frac{120kJ/kg.k}{295K}](https://tex.z-dn.net/?f=%20%5Cfrac%7B120kJ%2Fkg.k%7D%7B295K%7D)
∆Es = 0.4068kJ/kg.k
Hence, entropy generated, Egen will be calculated as:
= -0.40 kJ/kg.K + 0.40608kJ/kg.K
= 0.0068kJ/kg.k