Actually the question is not clear. The Benefit of lifting using lever is that you can apply force in a convenient direction and you can use very less force to lift object by balancing the torque due to object.For example you want to lift a mass of 4N with a force 2N you can use a class 2 lever and maintain the ratio between the distances of the body and the point of application of force from the fulcrum to be 1:2.In any case balance the torque to get the required force.
Answer:
a. distance = s x t
Explanation:
The equation we know for speed is speed = distance/time, shortened to s = d/t
If you want to find the distance, you'd rearrange the formula to make d the subject. To isolate d, multiply by t on both sides (since it's being divided on the right. This leads to
s x t = d, with d isolated on the right side.
Therefore, to find the distance an object travelled you'd use a. distance = s x t
Answer: The answer is 333.3333 repeating
Explanation:
Divide the mass by the volume.
Answer:
(a) 20 m
(b) 6 m/s²
(c) Between t=0 and t=2, the body moves to the left.
Between t=2 and t=4, the body moves to the right.
Explanation:
v = 3t² − 6t
x(0) = 4
(a) Position is the integral of velocity.
x = ∫ v dt
x = ∫ (3t² − 6t) dt
x = t³ − 3t² + C
Use initial condition to find value of C.
4 = 0³ − 3(0)² + C
4 = C
x = t³ − 3t² + 4
Find position at t = 4.
x = 4³ − 3(4)² + 4
x = 20
(b) Acceleration is the derivative of velocity.
a = dv/dt
a = 6t − 6
Find acceleration at t = 2.
a = 6(2) − 6
a = 6
(c) v = 3t² − 6t
v = 3t (t − 2)
The velocity is 0 at t = 0 and t = 2. Evaluate the intervals.
When 0 < t < 2, v < 0.
When t > 2, v > 0.
Atomic mass= number of protons + number of neutrons

hope this helps