Even after reading the question, I don't understand it.
The speed of light is 299,792,458 meters per second, and that is the "speed limit" of the universe. Nothing moves faster. (Not even tachyons.)
Answer:
true
Explanation:
b/c anaerobic exercis helps type 2 diabetes
Answer:
3.4 x 10^-4 T
Explanation:
A = 1.5 x 10^-3 m^2
N = 50
R = 180 ohm
q = 9.3 x 106-5 c
Let B be the magnetic field.
Initially the normal of coil is parallel to the magnetic field so the magnetic flux is maximum and then it is rotated by 90 degree, it means the normal of the coil makes an angle 90 degree with the magnetic field so the flux is zero .
Let e be the induced emf and i be the induced current
e = rate of change of magnetic flux
e = dФ / dt
i / R = B x A / t
i x t / ( A x R) = B
B = q / ( A x R)
B = (9.3 x 10^-5) / (1.5 x 10^-3 x 180) = 3.4 x 10^-4 T
Pluto was discovered by the astronomer Clyde Tombaugh in February 1930. It was given the status of the ninth planet of the solar system.
As telescopes, particularly in on satellites, improved, more objects were discovered which caused a problem that they were quite small and some astronomers didn't think they qualified as being planets.
The International Astronomical Union (IAU) had a vote which was very close. They defined three criteria which a planet must satisfy.
It must be large enough for gravity to overcome structures of materials and make it spherical. Most bodies are flattened spheroids due to rotation.
It must orbit the Sun.
It must have cleared its orbit of other bodies other than moons.
The IAU created a new definition of an object called a dwarf planet which only satisfies the first two criteria. Pluto fails the third criterion, so it was demoted to a dwarf planet.
Many people, including myself, still consider Pluto to be the ninth planet.
To be pedantic, Jupiter has a lot of asteroids in its orbit at its two Lagrange points. They are called trojan asteroids. So, this means that Jupiter fails the IAU's third criterion and should be a dwarf planet, which it is certainly not!
Given the speed of the sound in the problem which is 1 mile per 5 seconds.
The speed is calculated by:
Speed = distance/time = (1mi/5s) (1610 m/1mi) = 300 m/s
Note that only 1 significant figure is given which is 5 second and so only 1 significant figure is justified in the result. The speed of sound is 343 m/s. therefore the rule of thumb is fairly close.