Answer:
Tamara's example is in fact an example that represents a linear functional relationship.
- This is because the cost of baby-sitting is linearly related to the amount of hours the nany spend with the child: the more hours the nany spends with the child, the higher the cost of baby-sitting, and this relation is constant: for every extra hour the cost increases at a constant rate of $6.5.
- If we want to represent the total cost of baby-sitting in a graph, taking the variable "y" as the total cost of baby-sitting and the variable "x" as the amount of hours the nany remains with the baby, y=5+6.5x (see the graph attached).
- The relation is linear because the cost increases proportionally with the amount of hours ($6.5 per hour).
- See table attached, were you can see the increses in total cost of baby sitting (y) when the amount of hours (x) increases.
207$ - 15$ = 192$
192$ : 8 = 24$
Answer: Each book costed 24$.
Answer:
(a - b)^2 = 49 - 4b^2 +2ab
Step-by-step explanation:
Given: a^2 + b^2 = 7b (assuming A is really “a”)
b^2 + (2b - a)^2 = 7^2
Find; (a - b)^2
Plan: Use Algebraic Manipulation
Start with b^2 + (2b - a)^2 = 7^2 =>
b^2 + 4b^2 - 4ab + a^2 = 49 by expanding the binomial.
a^2 + b^2 + 4b^2 - 4ab = 49 rearranging terms
a^2 + b^2 -2ab - 2ab + 4b^2 = 49 =>
a^2 - 2ab + b^2 = 49 - 4b^2 +2ab rearranging and subtracting 4b^2 and adding 2ab to both sides of the equation and by factoring a^2 - 2ab + b^2
(a - b)^2 = 49 - 4b^2 +2ab
Double Check: recalculated ✅ ✅
(a - b)^2 = 49 - 4b^2 +2ab
I think #4 is 4 but I'm not completely sure
The answer is D, becuase he doesn't do less than 90 and no more than 100 minutes.