0.042 moles of Hydrogen evolved
<h3>Further explanation</h3>
Given
I = 1.5 A
t = 1.5 hr = 5400 s
Required
Number of Hydrogen evolved
Solution
Electrolysis of water ⇒ decomposition reaction of water into Oxygen and Hydrogen gas.
Cathode(reduction-negative pole) : 2H₂O(l)+2e⁻ ⇒ H₂(g)+2OH⁻(aq)
Anode(oxidation-positive pole) : 2H₂O(l)⇒O₂(g)+4H⁻(aq)+4e⁻
Total reaction : 2H₂O(l)⇒2H₂(g)+O₂(g)
So at the cathode H₂ gas is produced
Faraday : 1 mole of electrons (e⁻) contains a charge of 96,500 C
Q = i.t
Q = 1.5 x 5400
Q = 8100 C
mol e⁻ = 8100 : 96500 = 0.084
From equation at cathode , mol ratio e⁻ : H₂ = 2 : 1, so mol H₂ = 0.042
Answer:
The answer to your question is below
Explanation:
2.- 6
3.- Carbon
4.- These electrons can be share to obtain stability.
5.- Protons, electrons
6.- electron cloud
7.- I and III
8.- 1
9.- 8A
10.- 4
11.- F
12.- F
13.- F
14.- T
15.- T
16.- T
17.- T
18.- T (I can not read the question but I think is true)
Dispersion forces are the only type of intermolecular force operating between non-polar molecules, for example, dispersion forces operate between hydrogen (H2) molecules, chlorine (Cl2) molecules, carbon dioxide (CO2) molecules, nitrogen tetroxide (N2O4) molecules and methane (CH4) molecules.
www.ausetute.com.au/intermof.html
Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.