Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

Answer:
its B
Explanation:
trust me i had this in my usatestprep, also follow me on tiktok, its ultrasolos
Answer:
Where the chart pls I can answer
Explanation:
Answer:
isn't that evaporation if not you can just delete my answer-
Explanation:
Answer:
D. Its temperature will remain 100 C until all the vapours condenses
Explanation:
Heat absorbed by a substance to change the state of matter is known as latent heat. This heat is utilized to break the bonds between atoms of the substance so that they can undergo phase change.
So, when water boils at 100 degree Celsius then temperature will remain constant unless and until all the water changes into vapor. As it is the latent heat that breaks the bonds between hydrogen and oxygen atoms of water so that liquid state can change into gaseous state.
Since latent heat is a hidden heat, that is why, it does not get reflected and there is no change in temperature due to it.
Thus, we can conclude that it is true that temperature will remain at 100°C until all the vapor condenses for a sample of water vapor at 101°C as it cools.